Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history

نویسندگان

  • Harald Hiesinger
  • James W. Head
چکیده

Argyre, located in the southern highlands southeast of Tharsis, is one of the largest impact basins on Mars and formed in Early Noachian time. We use Mars Global Surveyor (MGS) data to characterize the basin and its geologic features and units. It has been proposed that meltback of a south polar ice cap during the Noachian completely 6lled the basin with water, that the out7ow channel in the north drained the basin, and that the water eventually entered the northern lowlands (Parker T.J., 1994.) If true, this would be the longest drainage system on either Mars or the Earth and would have immense implications for the hydrologic cycle and the evolution of the atmosphere on Mars. In order to address this question, we used topographic data from the Mars Orbiter Laser Altimeter (MOLA) and imaging data from the Mars Observer Camera (MOC). We also tested several alternative models proposed by previous workers (i.e., eolian, volcanic, mud7ows, glaciers, 7uvial/lacustrine) for the evolution of the Argyre basin. Based on our investigation we conclude that the Argyre basin went through a complex geologic history with several geologic processes contributing to its current appearance. Glacial and 7uvial/lacustrine processes in conjunction with eolian modi6cation were probably most important in the evolution of the interior of the Argyre basin. The Hesperian wrinkle ridged unit Hr was previously interpreted as volcanic in origin due to the occurrence of ridges. Based on our observations we conclude that ridges in Argyre Planitia are dissimilar to wrinkle ridges in other occurrences of unit Hr. The new data suggest that these are eskers and based on the occurrence of these esker-like features, we propose a model in which the 7oor of Argyre was covered by ice. There is evidence for areally signi6cant amounts of water having ponded in the Argyre basin in its past history, but a complete 6ll to depths of ∼ 4 km and over7ow remains questionable. On the basis of our 6ndings it is unlikely that Uzboi Vallis drained the basin to the north, because the basin would have to be completely 6lled with at least 2:1× 10 km of water and this is not consistent with current hydrologic models. Instead, new MOLA data show evidence for drainage into the basin from the north, south of crater Hale and Uzboi Vallis. We performed estimates of the available water and found that the amount of water that can be produced by meltback of a Hesperian ice cap appears insuCcient to completely 6ll the Argyre basin. We propose that water that ponded in the Argyre basin would have sublimed, evaporated or migrated into the substrate rather than 7owing through the northern out7ow channel. In summary, a signi6cant input of sediments and a partial 6ll of Argyre basin with water during the Hesperian is suggested by several channels emptying into the Argyre basin from the south and north, signs of 7uvial erosion on the southern basin 7oor, the formation of small deltas at the mouths of Surius Vallis and the valley at the north rim, the amount of available water, and the smoothness of unit Hr. The formation of esker-like features indicates that this body of water very likely froze over. Finally MOC images reveal evidence that eolian activity, that is de7ation of 7oor material and accumulation of dunes, modi6ed the basin 7oor. On the basis of the MOLA and MOC data and our observations we outline a scenario for the evolution of the Argyre basin. In our model, water, produced by a Hesperian meltback of the south polar ice sheet, entered the Argyre basin, partly 6lling the 7oor of the basin to form a temporary ice covered lake. A downward freezing front propagated faster than the ice could sublime, resulting in an increasing ice thickness with time. As in7ux of water continued, in shallower regions of the lake (i.e., close to the incoming channels), the ice was grounded and incoming water formed subglacial channels in which esker-like ridges were deposited. After the in7ux ceased, continued sublimation and migration of water into the substrate reduced the amount of water/ice in the basin. Throughout the entire geologic history, eolian activity played an important role in the Argyre basin, mantling or exhuming morphologic features, in7uencing sublimation rates, and contributing to the present day morphology. ? 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geology of the Isidis Basin, Mars

Introduction: Building on Bridges et al. [2003], we are currently studying the general geologic history and evolution of the Isidis basin based on topographic and imaging data obtained by orbiting spacecraft such as Mars Global Surveyor (MGS) and Mars Odyssey. This study complements our recently completed analyses on Syrtis Major to the west [Hiesinger and Head, 2003] and the transition between...

متن کامل

An analysis of sinuous ridges in the southern Argyre Planitia, Mars using HiRISE and CTX images and MOLA data

[1] A suite of sinuous ridges with branching and braided morphologies forms an anastomosing network in southern Argyre Planitia, Mars. Several modes of origin have been proposed for the Argyre ridges. Imagery from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) aboard Mars Reconnaissance Orbiter (MRO) and Mars Orbiter Laser Altimeter (MOLA) topographic data sets...

متن کامل

The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained ma...

متن کامل

Constraints on the history of open-basin lakes on Mars from the composition and timing of volcanic resurfacing

[1] Abundant evidence exists for valley network-related fluvial activity near the Noachian-Hesperian transition on Mars, and areally significant quantities of volcanic ridged plains were emplaced during this period as well. Thus, it is worthwhile to explore the hypothesis that lava-water interaction occurred on the surface of Mars at this time. We analyzed the morphology, physical properties, c...

متن کامل

The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system

The early climate of Mars (Noachian Period, the first ~20% of its history) is thought to differ significantly from that of its more recent history (Amazonian Period, the last ~66%) which is characterized by hyperarid, hypothermal conditions that result in mean annual air temperatures (MAAT) well below 0°C, a global cryosphere, minimal melting on the ground surface, and a horizontally stratified...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002